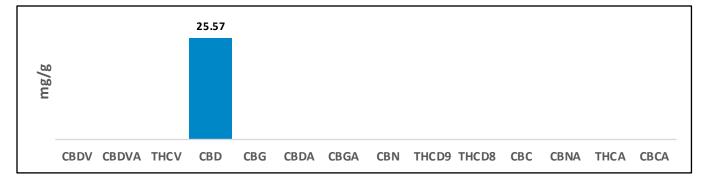


Certification of Analysis

labservices@ionizationlabs.com 737.231.0772

ORGANIX


Whole Organix LLC Houston, Texas 77018

Sample Information

Test Date:	Oct 14, 2020, 4:58 PM	Sample Type:	Topicals			
Sample / Strain Name:	PK 1500 mg cream	IL Unique ID:	ILCTS387-3			
Lot #/ Batch ID:	12J2013C					
Sample Description:	White cream					
Notes:	Unit weight is 60 grams per 2 oz jar					
Analyst Name:	Enrique Orci IV	Reviewer Name:	Ted Barton			
Analyst Signature:	Envique Orci II	Reviewer Signature:	Ted Barton			

Cannabinoid Potency and Profile

Cannabinoid	Result (%)	Result (mg/g)	mg / 2 oz Jar	
CBDV	N/D	N/D	N/D	
CBDVA	N/D	N/D	N/D	
THCV	N/D	N/D	N/D	
CBD	2.56%	25.57	1534.20	
CBG	N/D	N/D	N/D	
CBDA	N/D	N/D	N/D	
CBGA	N/D	N/D	N/D	
CBN	N/D	N/D	N/D	
THCD9	N/D	N/D	N/D	
THCD8	N/D	N/D	N/D	
CBC	N/D	N/D	N/D	Total THC %
CBNA	N/D	N/D	N/D	Total THC mg / 2 or
THCA	N/D	N/D	N/D	
CBCA	N/D	N/D	N/D	Total CBD %
Totals	2.56%	25.57	1534.20	Total CBD mg / 2 oz Ja

THC Total = % of THCD9 + (% of THCA x 0.877), CBD Total = % of CBD + (% of CBDA x 0.877), CBG Total = % of CBG + (% of CBGA x 0.876), CBN Total = % of CBN + (% of CBNA x 0.876), CBC Total = % of CBC + (% of CBCA x 0.877), CBDV Total = % of CBDV + (% of CBDVA x 0.867), N/D = Not Detected

Testing results are based solely upon the samples submitted to lonization Labs, LLC. lonization Labs warrants that all analytical work is conducted in accordance with all applicable standard laboratory practices uisng validated methods. This report may not be reproduced without the written consent of lonization Labs.

ISO 17025 Accredited A2LA Certificate #: 5756.01 Texas Dept of Ag Account #: TL2020003

Cann-ID powered by Ionization Labs | 3636 Dime Cir, Suite A, Austin, TX 78744

Report Number: 20-010672/D02.R00 **Report Date:** 10/08/2020 ORELAP#: OR100028 **Purchase Order: Received:** 10/02/20 10:30

Customer: Product identity: Client/Metrc ID: Laboratory ID:	Deschutes Labs 1060418-2020-DLF-47 20-010672-0001	7-TFD-01 Sample Date:		09/29/20 13:48	
		Summary			
Potency:					
Analyte CBD CBDV [†]	Result (%) 85.3 0.179			-	
			• CBD	THC-Total	<loq< td=""></loq<>
			• CBDV	(Reported in perce	nt of total sample)
Residual Solvents	:				
All analytes passing	and less than LOQ.				
Pesticides:					

All analytes passing and less than LOQ.

Metals:

Less than LOQ for all analytes.

Page 1 of 14
<u>www.columbialaboratories.com</u> Page 1 of 14
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	20-010672/D02.R00
Report Date:	10/08/2020
ORELAP#:	OR100028
Purchase Order:	
Received:	10/02/20 10:30

Customer:

Deschutes Labs

1060418-2020-DLF-47-TFD-01
09/29/20 13:48
20-010672-0001
UPS
20.9 °C

Sample Results

Potency	Metho	d J AOAC 2015	V98-6 (mod)	Batch: 2008206	Analyze: 10/5/20 7:17:00 PM
Analyte	As	Dry LOQ	Notes		
	Received	weight			
CBC	< LOQ	0.0928			
CBC-A [†]	< LOQ	0.0928			
CBC-Total [†]	< LOQ	0.174			
CBD	85.3	0.928			CBD CBDV
CBD-A	< LOQ	0.0928			
CBD-Total	85.3	1.01			
CBDV [†]	0.179	0.0928			
CBDV-A [†]	< LOQ	0.0928			
CBDV-Total [†]	0.179	0.173			
CBG [†]	< LOQ	0.0928			
CBG-A [†]	< LOQ	0.0928			
CBG-Total	< LOQ	0.173			
CBL [†]	< LOQ	0.0928			
CBN	< LOQ	0.0928			
$\Delta 8\text{-THC}^{\dagger}$	< LOQ	0.0928			
∆9-THC	< LOQ	0.0928			
THC-A	< LOQ	0.0928			
THC-Total	< LOQ	0.174			
THCV [†]	< LOQ	0.0928			
THCV-A [†]	< LOQ	0.0928			
THCV-Total [†]	< LOQ	0.173			
Total Cannabinoids [†]	85.5				

Page 2 of 14 <u>www.columbialaboratories.com</u> Page 2 of 14 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Method EPA5021A

380

160

5000

2.00

3880

620

290

70.0

3000

5000

5000

720

Limits LOQ Status

100

30.0

30.0

30.0

30.0

200

1.00

200

200

200

150

30.0

200

200

200

200

600

100

400

pass

Result

< LOQ

Solvents

1,4-Dioxane

2-Ethoxyethanol

2-Methylpentane

2,2-Dimethylbutane

2,3-Dimethylbutane

Analyte

Acetone

Benzene

Methanol

n-Heptane

n-Pentane

Cyclohexane

Ethyl benzene

Ethylene glycol

Hexanes (sum)

Methylpropane

Pentanes (sum)

Tetrahydrofuran

Total Xylenes

Isopropylbenzene

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Notes

Units µg/g

Analyte

2-Butanol

2-Methylbutane

2-Propanol (IPA)

3-Methylpentane

Butanes (sum)

Ethylene oxide

Isopropyl acetate

Methylene chloride

Total Xylenes and Ethyl

Ethyl acetate

Ethyl ether

m.p-Xylene

n-Butane

n-Hexane

o-Xylene

Propane

Toluene

Acetonitrile

2,2-Dimethylpropane

< LOQ

410

5000

5000

5000

50.0

5000

600

5000

890

2170

	Report N	lumber:	20-	010672	2/D02.R0	0
	Report D	Date:	10/	08/202	0	
	ORELAP	'# :	OR	10002	8	
	Purchas	e Order:				
	Received	d:	10/	02/20	10:30	
Batch 2	2008240	Analyz	e 10/0)7/20 ()9:10 AM	
	Result	Limits	LOQ	Status	Notes	
	< LOQ	5000	200	pass		
е	< LOQ		200			
PA)	< LOQ	5000	200	pass		
ropane	< LOQ		200			
ne	< LOQ		30.0			

100

400

200

200

30.0

200

200

200

200

30.0

200

200

100

600

pass

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made

12423 NE Whitaker Way Portland, OR 97230 503-254-1794

Report N	umber:	20-010672/D02.R00	
Report D	ate:	10/08/2020	
ORELAP	#:	OR100028	
Purchase	e Order:		
Received	l:	10/02/20 10:30	
08189	Analyze	e 10/05/20 05:32 PM	
Result	Limits L	OQ Status Notes	
100	0.40	0.050	

Pesticides	Method	AOAC	2007.01 & EN	l 15662 (mod)	Units mg/kg	Batch 200	8189	Analyz	ze 10/05/20 05:32 PM
Analyte	Result	Limits	s LOQ Status	Notes	Analyte		Result	Limits	LOQ Status Notes
Abamectin	< LOQ	0.50	0.250 pass		Acephate		< LOQ	0.40	0.250 pass
Acequinocyl	< LOQ	2.0	1.00 pass		Acetamiprid		< LOQ	0.20	0.100 pass
Aldicarb	< LOQ	0.40	0.200 pass		Azoxystrobin		< LOQ	0.20	0.100 pass
Bifenazate	< LOQ	0.20	0.100 pass		Bifenthrin		< LOQ	0.20	0.100 pass
Boscalid	< LOQ	0.40	0.200 pass		Carbaryl		< LOQ	0.20	0.100 pass
Carbofuran	< LOQ	0.20	0.100 pass		Chlorantranilip	role	< LOQ	0.20	0.100 pass
Chlorfenapyr	< LOQ	1.0	0.500 pass		Chlorpyrifos		< LOQ	0.20	0.100 pass
Clofentezine	< LOQ	0.20	0.100 pass		Cyfluthrin		< LOQ	1.0	0.500 pass
Cypermethrin	< LOQ	1.0	0.500 pass		Daminozide		< LOQ	1.0	0.500 pass
Diazinon	< LOQ	0.20	0.100 pass		Dichlorvos		< LOQ	1.0	0.500 pass
Dimethoate	< LOQ	0.20	0.100 pass		Ethoprophos		< LOQ	0.20	0.100 pass
Etofenprox	< LOQ	0.40	0.200 pass		Etoxazole		< LOQ	0.20	0.100 pass
Fenoxycarb	< LOQ	0.20	0.100 pass		Fenpyroximate)	< LOQ	0.40	0.200 pass
Fipronil	< LOQ	0.40	0.200 pass		Flonicamid		< LOQ	1.0	0.400 pass
Fludioxonil	< LOQ	0.40	0.200 pass		Hexythiazox		< LOQ	1.0	0.400 pass
Imazalil	< LOQ	0.20	0.100 pass		Imidacloprid		< LOQ	0.40	0.200 pass
Kresoxim-methyl	< LOQ	0.40	0.200 pass		Malathion		< LOQ	0.20	0.100 pass
Metalaxyl	< LOQ	0.20	0.100 pass		Methiocarb		< LOQ	0.20	0.100 pass
Methomyl	< LOQ	0.40	0.200 pass		MGK-264		< LOQ	0.20	0.100 pass
Myclobutanil	< LOQ	0.20	0.100 pass		Naled		< LOQ	0.50	0.250 pass
Oxamyl	< LOQ	1.0	0.500 pass		Paclobutrazole	9	< LOQ	0.40	0.200 pass
Parathion-Methyl	< LOQ	0.20	0.200 pass		Permethrin		< LOQ	0.20	0.100 pass
Phosmet	< LOQ	0.20	0.100 pass		Piperonyl buto	xide	< LOQ	2.0	1.00 pass
Prallethrin	< LOQ	0.20	0.200 pass		Propiconazole		< LOQ	0.40	0.200 pass
Propoxur	< LOQ	0.20	0.100 pass		Pyrethrin I (tot	al)	< LOQ	1.0	0.500 pass
Pyridaben	< LOQ	0.20	0.100 pass		Spinosad		< LOQ	0.20	0.100 pass
Spiromesifen	< LOQ	0.20	0.100 pass		Spirotetramat		< LOQ	0.20	0.100 pass
Spiroxamine	< LOQ	0.40	0.200 pass		Tebuconazole		< LOQ	0.40	0.200 pass
Thiacloprid	< LOQ	0.20	0.100 pass		Thiamethoxam	ı	< LOQ	0.20	0.100 pass
Trifloxystrobin	< LOQ	0.20	0.100 pass						

Result	Limits	Units	LOQ	Batch	Analyze	Method	Notes
< LOQ		mg/kg	0.0396	2008237	10/06/20	AOAC 2013.06 (mod.)	Х
< LOQ		mg/kg	0.0396	2008237	10/06/20	AOAC 2013.06 (mod.)	Х
< LOQ		mg/kg	0.0396	2008237	10/06/20	AOAC 2013.06 (mod.)	Х
< LOQ		mg/kg	0.0198	2008237	10/06/20	AOAC 2013.06 (mod.)	Х
	< LOQ < LOQ < LOQ	< LOQ < LOQ < LOQ	< LOQ mg/kg < LOQ mg/kg < LOQ mg/kg	< LOQ mg/kg 0.0396 < LOQ mg/kg 0.0396 < LOQ mg/kg 0.0396	< LOQ mg/kg 0.0396 2008237 < LOQ mg/kg 0.0396 2008237 < LOQ mg/kg 0.0396 2008237	< LOQ mg/kg 0.0396 2008237 10/06/20 < LOQ mg/kg 0.0396 2008237 10/06/20 < LOQ mg/kg 0.0396 2008237 10/06/20	 < LOQ mg/kg 0.0396 2008237 10/06/20 AOAC 2013.06 (mod.) < LOQ mg/kg 0.0396 2008237 10/06/20 AOAC 2013.06 (mod.) < LOQ mg/kg 0.0396 2008237 10/06/20 AOAC 2013.06 (mod.) < LOQ

Page 4 of 14 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number: 20-010672/D02.R00 **Report Date:** 10/08/2020 **ORELAP#:** OR100028 **Purchase Order:** Received: 10/02/20 10:30

These test results are representative of the individual sample selected and submitted by the client.

Abbreviations

Limits: Action Levels per OAR-333-007-0400, OAR-333-007-0210, OAR-333-007-0220

Limit(s) of Quantitation (LOQ): The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.

[†] = Analyte not NELAP accredited.

Units of Measure

µg/g = Microgram per gram mg/kg = Milligram per kilogram = parts per million (ppm) % = Percentage of sample % wt = $\mu g/g$ divided by 10,000

Glossary of Qualifiers X: Not ORELAP accredited.

Approved Signatory

Derrick Tanner General Manager

Page 5 of 14

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	20-010672/D02.R00
Report Date:	10/08/2020
ORELAP#:	OR100028
Purchase Order:	

Received:

C

с • -

с

с

c

Time

10220 1030

с

c

•

•

Shipped Via: ____

Prelog storage:

10/02/20 10:30

Hemp /	Cannabis Usable / Ext	ract
Cha	ain of Custody Record	

		ES		Revis		c	hain	of (#: CF0	Custo	ody / 02/20	Rec 6/202	Extrac ord 20 Eff: 02/	0		20-0	51 10/072	
							A	nalysi	is Requ	uested		J.		PC) Number:		
C	ompany: Deschutes Labs											1					
	Contact: Drew Van Roekel										-	500					
St	reet: 2020 NW Industrial Park Rd											7		Proj	ect Name:		
Ci	ty: Prineville State:	OR Zip: 9	97754			5					2		Cust	om R	eporting:		
				-		en	-				1.779		Repo	ort to	State - 🗆 M	ETRC or 🛛 Other:	
ピ Email Results: Drew@Deschuteslabs.com か: (503_)809-9798 日 Fx Results: () Billing (if different):					esticides	Residual Solu	y Metals				and and a second					andard 🗌 Rush * 🗌 Priorit *Ask for availability	y Rush *
				ncy	5	Sic	Heavy				92		Same		Weight		
Lab ID	Client Sample Identification	Date	Time	Potency	Pe	R	H						Туре	923266	(Units)	Comments/Met	rc ID
	R&D TF-05 Input Material	9/29/20	0859	V	DV2						18-		С	-	10 g		
١	1060418-2020-DLF-47- TFD-01	9/29/20	138	\checkmark	V	\checkmark	\checkmark			ľ	1		С	-			
		9/29/20											C	-			
		9/29/20											с	-			
_		-											 	Courses of the local division of the local d			

+ - Sample Type Codes: Vegitation (∨) ; Isolates (S) ; Extract/Concentrate (C)

Date

Samples submitted to Columbia Laboratories with testing requirements constitute an agreement for services in accordance with the current terms of service associated with this COC. By signing "Relinquished by" you are agreeing to these terms 12423 NE Whitaker Way P: (503) 254-1794 | Fax: (503) 254-1452 Page _

Received By:

Portland, OR 97230

Relinquished By:

Ph:

Lab

ID

info@columbialaboratories.com

____of___ www.columbialaboratories.com

0.0

Lab Use Only:

Evidence of cooling: Yes | No - Temp (°C): Sample in good condition:
Yes |
No □ Cash | □ Check | □ CC | □ Net:

or 🗆 Client drop

Page 6 of 14

Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

9/29/20

9/29/20 9/29/20

9/29/20

9/29/20

9/29/20

9/29/20

Date

9/29/20

Time

1409

Columbia LABORATORIES ATentamus Company	12423 NE Whita Portland, OR 503-254-17	97230	у		Repo OREL	rt Number: rt Date: .AP#: nase Order: ived:	20-010672/D02.R0 10/08/2020 OR100028 10/02/20 10:30
	Columbia Laboratories Sample Receipt Form				cument Control: 0 Effective: 02/2		
Job Number: 20-010672	Search Name:				_		
Package/Cooler opened on (if different than receive	d date/time) Date: 10-2	Time:	030	1			
Received By (Initials):							
 Were custody seals on outside of the package/o If YES, how many and where? 	cooler?	YES	NO	NA			
Were signature and date correct?		YES	NO	NA			
2) Were custody papers included in the package/c		YES	NO	NA			
Were custody papers properly filled out (ink, si	gn, date)?	YES	NO	NA			
Did you sign custody papers in the appropriate	place?	YES	NO	NA			
5) How was the package/cooler delivered?		U					
UPS FEDEX USPS	CLIENT COURIER	OTHE	-				
Tracking Number (written in or copy of shipp	ing label): 17 10	4 E	64	03	9202	6224	
6) Was packing material used?		YES	NO	NA			
Peanuts Bubble Wrap Foam Paper	Other:						
7) Was sufficient ice used (if appropriate)? What kind?		YES	NO	NA			
Blue Ice Ice Cooler Packs	Dry Ice						
8) Were all sample containers sealed in separate p	lastic bags?	YES	NO	NA			
 Did all sample containers arrive in good condition 	on?	YES	NO	NA			
10) Were all sample container labels complete?		TES	NO	NA			
11) Did all sample container labels and tags agree v	with the coc?	YES	NO	NA			
12) Were correct sample containers used for the tes	ts indicated?	YES	NO	NA			
13) Were VOA vials checked for absence of air but	obles (note if found)?	YES	NO	NA			
14) Was a sufficient amount of sample sent in each	sample container?	YES	NO	NA			
15) Temperature of the samples upon receipt (See S	SOP for proper temps)	Z). ac				
(See a				01			
	R44 F44 Ambient Shelf	Canna	bis Table	Other			

 www.columbialaboratories.com
 Page 7 of 14

 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	20-010672/D02.R00
Report Date:	10/08/2020
ORELAP#:	OR100028
Purchase Order:	
Received:	10/02/20 10:30

Revision: 1.00 Control: CFL-C21 Revised: 08/12/2019 Effective: 08/15/2019

AOAC 2007.1 & EN 15662		Units:	mg/Kg			Ba	tch ID: 200818	9
vietnod Blank				Laboratory Con	troi sample			
Analyte	Blank Result	Blank Limits	Notes	LCS Result	LCS Spike	LCS % Rec	Limits	Notes
Acephate	0.048	< 0.200		0.953	1.000	95.3	68.1 - 126	
Acequinocyl	0.038	< 1.000		4.336	4.000	108.4	69.7 - 129	
Acetamiprid	0.000	< 0.100		0.367	0.400	91.6	68.9 - 128	[
Aldicarb	0.134	< 0.200		0.728	0.800	91.0	67.8 - 126	1
Abamectin	0.000	< 0.288		0.901	1.000	90.1	69.3 - 129	1
Azoxystrobin	0.008	< 0.100		0.384	0.400	96.0	68.9 - 128	
Bifenazate	0.010	< 0.100		0.367	0.400	91.8	68.2 - 127	1
Bifenthrin	0.000	< 0.100		0.367	0.400	91.8	71.4 - 133	1
Boscalid	0.000	< 0.100	1	0.664	0.800	83.0	68.3 - 127	1
Carbaryl	0.014	< 0.100		0.353	0.400	88.2	69.5 - 129	1
Carbofuran	0.015	< 0.100		0.352	0.400	88.0	69.0 - 128	1
Chlorantraniliprol	0.000	< 0.100		0.326	0.400	81.5	69.6 - 129	1
Chlorfenapyr	0.000	< 1.000		2.013	2.000	100.6	68.1 - 126	t
Chlorpyrifos	0.006	< 0.100	-	0.426	0.400	106.4	69.0 - 128	1
Clofentezine	0.019	< 0.100		0.347	0.400	86.8	66.9 - 124	1
Cyfluthrin	0.000	< 1.000		1.493	2.000	74.7	70.7 - 131	1
Cypermethrin	0.087	< 1.000		1.728	2.000	86.4	71.2 - 132	-
Daminozide	0.101	< 1.000		1.728	2.000	92.7	65.8 - 122	-
Diazinon	0.101	< 0.100		0.374	0.400	93.5	68.3 - 122	
Diazinon Dichlorvos	0.004	< 0.500		1.695	2.000	93.5 84.8	68.0 - 126	-
Dimethoat	0.086	< 0.100		0.365	0.400	91.3		-
11/1-F0/12/1381-9-1								<u> </u>
Ethoprophos	0.030	< 0.100		0.375	0.400	93.9	67.9 - 126	<u> </u>
tofenprox	0.016	< 0.100		0.768	0.800	96.0	69.0 - 128	ļ
Etoxazol	0.005	< 0.100		0.376	0.400	93.9	68.2 - 127	1
enoxycarb	0.012	< 0.100		0.347	0.400	86.8	68.6 - 127	
enpyroximat	0.026	< 0.100		0.731	0.800	91.4	70.2 - 130	<u> </u>
Fipronil	0.006	< 0.100		0.785	0.800	98.1	71.4 - 133	
Flonicamid	0.000	< 0.400		1.001	1.000	100.1	69.3 - 129	
Iudioxonil	0.000	< 0.100		0.835	0.800	104.4	69.0 - 128	1
Hexythiazox	0.031	< 0.400		0.913	1.000	91.3	70.9 - 132	1
mazalil	0.011	< 0.100		0.390	0.400	97.6	71.6 - 133	1
midacloprid	0.034	< 0.200		0.719	0.800	89.9	67.7 - 126	1
Kresoxim-Methyl	0.030	< 0.100		0.743	0.800	92.9	68.9 - 128	1
Malathion	0.015	< 0.100	-	0.377	0.400	94.3	68.8 - 128	1
Vetalaxyl	0.021	< 0.100		0.375	0.400	93.7	68.2 - 127	1
Vethiocarb	0.050	< 0.100		0.388	0.400	97.0	68.7 - 128	1
Vethomyl	0.000	< 0.200		0.768	0.800	96.0	67.8 - 126	1
VIGK 264	0.009	< 0.100		0.362	0.400	90.6	69.8 - 130	
Myclobutanil	0.012	< 0.100		0.369	0.400	92.3	67.6 - 126	+
Valed	0.012	< 0.200		0.869	1.000	86.9	68.6 - 127	<u> </u>
Dxamvl	0.000	< 0.400		1.928	2.000	96.4	67.7 - 126	-
				0.701	0.800		1	-
Paclobutrazol	0.000	< 0.200				87.7		L
Parathion Methyl	0.000	< 0.200		0.845	0.800	105.6		-
Permethrin	0.005	< 0.100		0.431	0.400	107.8	70.1 - 130	
Phosmet	0.000	< 0.100		0.359	0.400	89.8	69.1 - 128	
Piperonyl butoxide	0.033	< 1.000		1.807	2.000	90.3	69.8 - 130	
Prallethrin	0.148	< 0.200		0.453	0.400	113.2	70.5 - 131	
Propiconazole	0.020	< 0.200		0.759	0.800	94.9	68.7 - 128	
Propoxur	0.014	< 0.100		0.366	0.400	91.4	68.0 - 126	1
Pyrethrins	0.019	< 0.500		0.383	0.413	92.6	69.9 - 130	1
yridaben	0.000	< 0.100		0.406	0.400	101.6	74.6 - 139	1
pinosad	0.000	< 0.100		0.408	0.388	105.2	75.7 - 141	1
piromesifen	0.029	< 0.100		0.360	0.400	89.9	69.3 - 129	1
pirotetramat	0.016	< 0.100		0.386	0.400	96.6	69.1 - 128	1
piroxamine	0.015	< 0.100		0.724	0.800	90.5	68.8 - 128	1
lebuconazol	0.020	< 0.200		0.775	0.800	96.8	68.1 - 127	1
hiacloprid	0.000	< 0.100		0.370	0.400	92.4	68.2 - 127	1
Thiamethoxam	0.000	< 0.100		0.370	0.400	89.3	68.0 - 126	-
mannethoxam	0.000	< 0.100		0.357	0.400	92.9	69.4 - 129	1

Page 8 of 14

Page 8 of 14 <u>www.columbialaboratories.com</u> Page 8 of 14 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	20-010672/D02.R00
Report Date:	10/08/2020
ORELAP#:	OR100028
Purchase Order:	
Received:	10/02/20 10:30

Revision: 1.00 Control: CFL-C21

AOAC 2007.1 & EN 15662		aborato																	
Matrix Spike/Matrix Spike D	Duplicate Recov	/eries		0 0			Sample ID:												
Analyte	Result	MS Res	MSD Res	Spike	RPD%	Limit	MS % Rec	MSD % Rec	Limits	Notes									
Acephate	0.038	0.944	0.931	1.000	1.4	< 30	90.7	89.4	50 - 150	1									
Acequinocyl	0.000	4.101	3.606	4.000	12.8	< 30	102.5	90.2	50 - 150	1									
Acetamiprid	0.000	0.462	0.358	0.400	25.5	< 30	115.6	89.4	50 - 150										
Aldicarb	0.153	1.314	0.758	0.800	53.6	< 30	145.2	75.7	50 - 150	R									
Abamectin	0.000	1.440	1.517	1.000	5.2	< 30	144.0	151.7	50 - 150	Q1									
Azoxystrobin	0.011	0.484	0.512	0.400	5.6	< 30	118.1	125.1	50 - 150	1									
Bifenazate	0.000	0.359	0.366	0.400	2.0	1 < 30	89.7	91.5	50 - 150	1									
Bifenthrin	0.000	0.805	0.828	0.400	2.9	< 30	201.2	207.1	50 - 150	01									
Boscalid	0.000	0.772	0.721	0.800	6.8	< 30	96.5	90.2	50 - 150	1									
Carbaryl	0.013	0.418	0.384	0.400	8.5	< 30	101.3	92.9	50 - 150	1									
Carbofuran	0.014	0.423	0.391	0.400	7.8	< 30	102.4	94.4	50 - 150	1									
Chlorantraniliprol	0.000	0.356	0.339	0.400	4.9	< 30	88.9	84.7	50 - 150	-									
Chlorfenapyr	0.000	2.074	1.696	2.000	20.1	< 30	103.7	84.8	50 - 150	-									
Chlorpyrifos	0.020	0.525	0.551	0.400	4.9	< 30	126.2	132.8	50 - 150										
Clofentezine	0.000	0.417	0.427	0.400	2.3	< 30	104.3	106.7	50 - 150										
Cyfluthrin	0.000	3.135	2.973	2.000	5.3	< 30	156.8	148.6	30 - 150	Q1									
Cypermethrin	0.000	1.779	1.907	2.000	7.0	< 30	88.9	95.3	50 - 150	- QI									
Daminozide	0.000	1.779	1.907	2.000	5.9	< 30	94.9	89.3											
	0.059	0.429	0.423	0.400	5.9	< 30	94.9	89.3 104.9											
Diazinon Dichlorvos	0.003	2.064	2.055	2.000	0.5	< 30	99.0	98.6	50 - 150	-									
								0.73273		-									
Dimethoat	0.000	0.767	0.382	0.400	66.9	< 30	191.7	95.6	50 - 150	R,Q1									
Ethoprophos	0.029	0.343	0.294	0.400	15.4	< 30	78.6	66.3	50 - 150										
Etofenprox	0.020	0.881	0.973	0.800	9.9	< 30	107.5	119.1	50 - 150	Į									
Etoxazol	0.004	0.353	0.384	0.400	8.1	< 30	87.4	94.9	50 - 150										
Fenoxycarb	0.000	0.378	0.376	0.400	0.4	< 30	94.4	94.0	50 - 150										
Fenpyroximat	0.000	0.684	0.696	0.800	1.7	< 30	85.5	86.9	50 - 150										
Fipronil	0.009	1.011	0.992	0.800	1.8	< 30	125.2	122.9	50 - 150										
Flonicamid	0.028	0.869	0.921	1.000	5.8	< 30	84.1	89.3	50 - 150										
Fludioxonil	0.000	0.990	1.087	0.800	9.3	< 30	123.7	135.9	50 - 150										
Hexythiazox	0.000	2.105	2.200	1.000	4.4	< 30	210.5	220.0	50 - 150										
Imazalil	0.065	0.388	0.379	0.400	2.4	< 30	80.9	78.6	50 - 150	1									
Imidacloprid	0.032	0.734	0.756	0.800	3.0	< 30	87.7	90.5	50 - 150	1									
Kresoxim-Methyl	0.000	0.718	0.757	0.800	5.3	< 30	89.7	94.7	50 - 150	1									
Malathion	0.011	0.419	0.437	0.400	4.2	< 30	102.1	106.6	50 - 150	1									
Metalaxyl	0.020	0.377	0.391	0.400	3.6	< 30	89.4	92.9	50 - 150	1									
Methiocarb	0.051	0.445	0.428	0.400	3.9	< 30	98.4	94.1	50 - 150	1									
Methomyl	0.000	0.769	0.798	0.800	3.7	< 30	96.1	99.8	50 - 150	1									
MGK 264	0.000	0.382	0.378	0.400	0.9	< 30	95.4	94.6	50 - 150	1									
Myclobutanil	0.010	0.341	0.352	0.400	3.1	< 30	82.8	85.4	50 - 150	1									
Naled	0.000	1.178	1.095	1.000	7.3	< 30	117.8	109.5	50 - 150	1									
Oxamyl	0.000	2.072	2.031	2.000	2.0	< 30	103.6	101.6	50 - 150	1									
Paclobutrazol	0.031	0.687	0.685	0.800	0.4	< 30	82.1	81.8	50 - 150	1									
Parathion Methyl	0.000	0.643	0.676	0.800	5.0	< 30	80.4	84.5	30 - 150	1									
Permethrin	0.010	0.412	0.421	0.400	2.2	1 < 30	100.7	103.0	50 - 150	1									
Phosmet	0.000	0.380	0.402	0.400	5.6	< 30	94.9	100.4	50 - 150	1									
Piperonyl butoxide	0.006	2.221	2.180	2.000	1.9	< 30	110.8	108.7	50 - 150	ł									
Prallethrin	0.000	0.725	0.724	0.400	0.2	< 30	181.3	181.0	50 - 150	Q1									
Propiconazole	0.006	0.819	0.792	0.800	3.4	< 30	101.5	98.2	50 - 150										
Propoxur	0.012	0.449	0.371	0.400	19.1	< 30	101.5	89.6	50 - 150										
Pyrethrins	0.000	0.449	0.371	0.400	19.1	< 30	97.6	99.3	50 - 150	1									
Pyridaben	0.000	0.403	0.410	0.413	0.8	< 30	77.7	77.1	50 - 150	-									
Spinosad	0.000	0.311	0.308	0.400	3.6	< 30	102.1	105.8	50 - 150										
			0.411	0.388	3.6	< 30	102.1	105.8 99.0	50 - 150	-									
Spiromesifen	0.013	0.417								<u> </u>									
Spirotetramat	0.015	0.337	0.352	0.400	4.5	< 30	80.3	84.2	50 - 150	L									
Spiroxamine	0.014	0.720	0.726	0.800	0.9	< 30	88.1	89.0	50 - 150	ļ									
Febuconazol	0.000	0.702	0.699	0.800	0.4	< 30	87.7	87.4	50 - 150										
Thiacloprid	0.000	0.398	0.370	0.400	7.4	< 30	99.6	92.6	50 - 150	ļ									
Thiamethoxam	0.000	0.344	0.360	0.400	4.6	< 30	86.0	90.0	50 - 150										
Trifloxystrobin	0.000	0.399	0.459	0.400	9.5	< 30	99.8	114.7	50 - 150	1									

Revised: 08/12/2019 Effective: 08/15/2019

Page 9 of 14

Page 9 of 14 <u>www.columbialaboratories.com</u> Page 9 of 14 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

20-010672/D02.R00 **Report Number: Report Date:** 10/08/2020 **ORELAP#:** OR100028 **Purchase Order:**

Received:

10/02/20 10:30

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

J AOAC 2015	V98-6			Bat	ch ID: 2008206		
Laboratory Co	ontrol Sample						
Analyte	Result	Spike	Units	% Rec	Limits	Evaluation	Notes
CBDV-A	0.205	0.2	%	102	85.0 - 115	Acceptable	
CBDV	0.213	0.2	%	107	85.0 - 115	Acceptable	
CBD-A	0.212	0.2	%	106	85.0 - 115	Acceptable	
CBG-A	0.200	0.2	%	99.9	85.0 - 115	Acceptable	
CBG	0.206	0.2	%	103	85.0 - 115	Acceptable	
CBD	0.215	0.2	%	107	85.0 - 115	Acceptable	
THCV	0.197	0.2	%	98.7	85.0 - 115	Acceptable	
THCVA	0.154	0.2	%	99.2	85.0 - 115	Acceptable	
CBN	0.208	0.2	%	104	85.0 - 115	Acceptable	
тнс	0.218	0.2	%	109	85.0 - 115	Acceptable	
D8THC	0.188	0.2	%	94.2	85.0 - 115	Acceptable	
CBL	0.193	0.2	%	96.4	85.0 - 115	Acceptable	
CBC	0.204	0.2	%	102	85.0 - 115	Acceptable	
THCA	0.187	0.2	%	93.7	85.0 - 115	Acceptable	
CBCA	0.191	 0.2	%	95.3	85.0 - 115	Acceptable	

Method Blank

Analyte	Result	LOQ	Units	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBDV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBD-A	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBG-A	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBG	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBD	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCV	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCVA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBN	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
тнс	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
D8THC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBL	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBC	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
THCA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	
CBCA	<loq< td=""><td>0.1</td><td>%</td><td>< 0.1</td><td>Acceptable</td><td></td></loq<>	0.1	%	< 0.1	Acceptable	

Abbreviations

- ND None Detected at or above MRL
- RPD Relative Percent Difference
- LOQ Limit of Quantitation

Units of Measure:

% - Percent

Page 10 of 14
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	20-010672/D02.R00
Report Date:	10/08/2020
ORELAP#:	OR100028
Purchase Order:	

Received:

10/02/20 10:30

Revision #: 0.00 Control : CFL-D06 Revision Date: 05/31/2019 Effective Date: 05/31/2019

			Labo	ratory (Quality Co	ntrol Results		
J AOAC 2015	V98-6				Bate	ch ID: 2008206	;	
Sample Dupli	cate							
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Evaluation	Notes
CBDV-A	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBDV	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBD-A	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBG-A	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBG	0.728	0.734	0.1	%	0.852	< 20	Acceptable	
CBD	0.118	0.118	0.1	%	0.649	< 20	Acceptable	
THCV	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
THCVA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBN	0.138	0.138	0.1	%	0.162	< 20	Acceptable	
тнс	14.2	14.3	0.1	%	0.314	< 20	Acceptable	
D8THC	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBL	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
СВС	0.378	0.382	0.1	%	1.22	< 20	Acceptable	
THCA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	
CBCA	<loq< td=""><td><loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<></td></loq<>	<loq< td=""><td>0.1</td><td>%</td><td>NA</td><td>< 20</td><td>Acceptable</td><td></td></loq<>	0.1	%	NA	< 20	Acceptable	

Abbreviations

- ND None Detected at or above MRL
- RPD Relative Percent Difference
- LOQ Limit of Quantitation
- NA Calculation Not Applicable given non-numerical results

Units of Measure:

% - Percent

Page 11 of 14
Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan
unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless
prior arrangements have been made.

Report Number:	20-010672/D02.R00
Report Date:	10/08/2020
ORELAP#:	OR100028
Purchase Order:	
Received:	10/02/20 10:30

	٤	borato	ry Qu	ality Con	trol Results	5						
EPA 5021				,			ch ID:	200824	10			
Method Blank					Laborator	ry Control S	Sample	Э				
Analyte	Result		Result	Spike	Units	% Rec	L	imi	ts	Notes		
Propane	ND	<	200		1140	1,190	µg/g	95.8	70	-	130	
Isobutane	ND	<	200		1400	1,520	µg/g	92.1	70	-	130	
Butane	ND	<	200		1430	1,520	µg/g	94.1	70	-	130	T
2,2-Dimethylpropane	ND	<	200		1830	1,910	µg/g	95.8	70		130	
Methanol	ND	<	200		3010	3,230	µg/g	93.2	70	1	130	
Ethylene Oxide	ND	<	30		117	117	µg/g	100.0	70		130	
2-Methylbutane	ND	<	200		3030	3,200	µg/g	94.7	70		130	
Pentane	ND	<	200		3030	3,220	µg/g	94.1	70	-	130	
Ethanol	ND	<	200		2860	3,200	µg/g	89.4	70	-	130	
Ethyl Ether	ND	<	200	_	2940	3,220	µg/g	91.3	70	-	130	
2,2-Dimethylbutane	ND	<	30		289	334	µg/g	86.5	70		130	
Acetone	ND	<	200		2980	3,210	µg/g	92.8	70	-	130	
2-Propanol	ND	<	200		2820	3,240	µg/g	87.0	70	-	130	
Acetonitrile	ND	<	100		895	975	µg/g	91.8	70		130	
2,3-Dimethylbutane	ND	<	30		313	345	µg/g	90.7	70		130	
Dichloromethane	ND	<	200		850	976	µg/g	87.1	70	-	130	
2-Methylpentane	ND	<	30		362	330	µg/g	109.7	70	-	130	
3-Methylpentane	ND	<	30		292	331	µg/g	88.2	70		130	
Hexane	ND	<	30		292	340	µg/g	85.9	70	-	130	
Ethyl acetate	ND	<	200		2970	3,210	µg/g	92.5	70	-	130	
2-Butanol	ND	<	200		2840	3,210	µg/g	88.5	70	-	130	
Tetrahydrofuran	ND	<	100		851	982	µg/g	86.7	70	-	130	
Cyclohexane	ND	<	200		2860	3,210	µg/g	89.1	70	-	130	
Benzene	ND	<	1		26.4	29.8	µg/g	88.6	70	-	130	
Isopropyl Acetate	ND	<	200		2880	3,220	µg/g	89.4	70	-	130	
Heptane	ND	<	200		2970	3,200	µg/g	92.8	70	-	130	
1,4-Dioxane	ND	<	100		831	970	µg/g	85.7	70	-	130	
2-Ethoxyethanol	ND	<	30		1450	1,600	µg/g	90.6	70	-	130	
Ethylene Glycol	ND	<	200	_	1010	974	µg/g	103.7	70	-	130	
Toluene	ND	<	200		840	982	µg/g	85.5	70	-	130	
Ethylbenzene	ND	<	200		1690	1,970	µg/g	85.8	70	-	130	
m,p-Xylene	ND	<	200		1720		µg/g		70	-	130	
o-Xylene	ND	<	200		1700	1,910	µg/g	89.0	70	-	130	
Cumene	ND	<	30		282	320	µg/g	88.1	70	-	130	

Page 12 of 14

Page 12 of 14 <u>www.columbialaboratories.com</u> Page 12 of 14 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

Report Number:	20-010672/D02.R00				
Report Date:	10/08/2020				
ORELAP#:	OR100028				
Purchase Order:					
Received:	10/02/20 10:30				

QC - Sample Duplicate				Sample ID: 20-010672-0001				
Analyte	Result	Org. Result	LOQ	Units	RPD	Limits	Accept/Fail	Notes
Propane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Isobutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Butane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylpropane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Methanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylene Oxide	ND	ND	30	µg/g	0.0	< 20	Acceptable	
2-Methylbutane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Pentane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethyl Ether	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2,2-Dimethylbutane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Acetone	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Propanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Acetonitrile	ND	ND	100	µg/g	0.0	< 20	Acceptable	
2,3-Dimethylbutane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Dichloromethane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
3-Methylpentane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Hexane	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethyl acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
2-Butanol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Tetrahydrofuran	ND	ND	100	µg/g	0.0	< 20	Acceptable	
Cyclohexane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Benzene	ND	ND	1	µg/g	0.0	< 20	Acceptable	
Isopropyl Acetate	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Heptane	ND	ND	200	µg/g	0.0	< 20	Acceptable	
1,4-Dioxane	ND	ND	100	µg/g	0.0	< 20	Acceptable	
2-Ethoxyethanol	ND	ND	30	µg/g	0.0	< 20	Acceptable	
Ethylene Glycol	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Toluene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Ethylbenzene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
m,p-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
o-Xylene	ND	ND	200	µg/g	0.0	< 20	Acceptable	
Cumene	ND	ND	30	µg/g	0.0	< 20	Acceptable	

Abbreviations

ND - None Detected at or above MRL RPD - Relative Percent Difference LOQ - Limit of Quantitation * Screening only

Q1 Quality Control result biased high. Only non detect samples reported.

Units of Measure:

µg/g- Microgram per gram or ppm mg/Kg - Milligrams per Kilogram Aw- Water Activity unit

Page 13 of 14

Page 13 of 14 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.

20-010672/D02.R00 **Report Number: Report Date:** 10/08/2020 **ORELAP#:** OR100028 **Purchase Order: Received:** 10/02/20 10:30

Explanation of QC Flag Comments:

Code	Explanation					
Q	Matrix interferences affecting spike or surrogate recoveries.					
Q1	Quality control result biased high. Only non-detect samples reported.					
Q2	Quality control outside QC limits. Data considered estimate.					
Q3	Sample concentration greater than four times the amount spiked.					
Q4	Non-homogenous sample matrix, affecting RPD result and/or % recoveries.					
Q5	Spike results above calibration curve.					
Q6	Quality control outside QC limits. Data acceptable based on remaining QC.					
R	Relative percent difference (RPD) outside control limit.					
R1	RPD non-calculable, as sample or duplicate results are less than five times the LOQ.					
R2	Sample replicates RPD non-calculable, as only one replicate is within the analytical range.					
LOQ1	Quantitation level raised due to low sample volume and/or dilution.					
LOQ2	Quantitaion level raised due to matrix interference.					
В	Analyte detected in method blank, but not in associated samples.					
B1	The sample concentration is greater than 5 times the blank concentration.					
B2	The sample concentration is less than 5 times the blank concentration.					

Page 14 of 14

Page 14 of 14 Test results relate only to the parameters tested and to the samples as received by the laboratory. Test results meet all requirements of NELAP and the Columbia Laboratories quality assurance plan unless otherwise noted. This report shall not be reproduced, except in full, without the written consent of this laboratory. Samples will be retained for a maximum of 30 days from the receipt date unless prior arrangements have been made.